Structural bioinformatics Conformational sampling and structure prediction of multiple interacting loops in soluble and b-barrel membrane proteins using multi-loop distance-guided chain-growth Monte Carlo method

نویسندگان

  • Ke Tang
  • Samuel W.K. Wong
  • Jun S. Liu
  • Jinfeng Zhang
  • Jie Liang
  • Anna Tramontano
چکیده

Motivation: Loops in proteins are often involved in biochemical functions. Their irregularity and flexibility make experimental structure determination and computational modeling challenging. Most current loop modeling methods focus on modeling single loops. In protein structure prediction, multiple loops often need to be modeled simultaneously. As interactions among loops in spatial proximity can be rather complex, sampling the conformations of multiple interacting loops is a challenging task. Results: In this study, we report a new method called multi-loop Distance-guided Sequential chainGrowth Monte Carlo (M-DISGRO) for prediction of the conformations of multiple interacting loops in proteins. Our method achieves an average RMSD of 1.93 Å for lowest energy conformations of 36 pairs of interacting protein loops with the total length ranging from 12 to 24 residues. We further constructed a data set containing proteins with 2, 3 and 4 interacting loops. For the most challenging target proteins with four loops, the average RMSD of the lowest energy conformations is 2.35 Å. Our method is also tested for predicting multiple loops in b-barrel membrane proteins. For outer-membrane protein G, the lowest energy conformation has a RMSD of 2.62 Å for the three extracellular interacting loops with a total length of 34 residues (12, 12 and 10 residues in each loop). Availability and implementation: The software is freely available at: tanto.bioe.uic.edu/m-DiSGro. Contact: [email protected] or [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Protein Loop Sampling and Structure Prediction Using Distance-Guided Sequential Chain-Growth Monte Carlo Method

Loops in proteins are flexible regions connecting regular secondary structures. They are often involved in protein functions through interacting with other molecules. The irregularity and flexibility of loops make their structures difficult to determine experimentally and challenging to model computationally. Conformation sampling and energy evaluation are the two key components in loop modelin...

متن کامل

Structural-functional studies of peptides derived from a long-chain snake neurotoxin Naja naja oxiana

Introduction: The design and structural characterization of mini-proteins with a compact, folded structure provide insight into the complex architecture of proteins today and has long been a challenging issue in structural- functional studies. Alpha neurotoxins from snake venom have a distinct folded structure comprised of a disulphide core and three loops or “fingers” each of these loops are c...

متن کامل

Molecular analysis of AbOmpA type-1 as immunogenic target for therapeutic interventions against MDR Acinetobacter baumannii infection

Introduction: Acinetobacter baumannii is associated with hospital-acquired infections. Outer membrane protein A of A.baumannii (AbOmpA) is a well-characterized virulence factor which has important roles in pathogenesis of this bacterium. Methods: Based on our PCR-sequencing of ompA gene in the clinical isolates, AbOmpA protein can be categorized into two types, named here type-1 and type-2. We ...

متن کامل

MASTR: multiple alignment and structure prediction of non-coding RNAs using simulated annealing

MOTIVATION As more non-coding RNAs are discovered, the importance of methods for RNA analysis increases. Since the structure of ncRNA is intimately tied to the function of the molecule, programs for RNA structure prediction are necessary tools in this growing field of research. Furthermore, it is known that RNA structure is often evolutionarily more conserved than sequence. However, few existin...

متن کامل

A Stochastic algorithm to solve multiple dimensional Fredholm integral equations of the second kind

In the present work‎, ‎a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind‎. ‎The solution of the‎ integral equation is described by the Neumann series expansion‎. ‎Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method‎. ‎An algorithm is proposed to sim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015